Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
Electron. j. biotechnol ; 32: 55-62, Mar. 2018. tab, ilus, graf
Article in English | LILACS | ID: biblio-1022638

ABSTRACT

Background: α-Amylase is widely used in the starch processing, food and paper industries, hydrolyzing starch, glycogen and other polysaccharides into glucose, maltose and oligosaccharides. An α-amylase gene family from Aspergillus niger CBS513.88 encode eight putative α-amylases. The differences and similarities, biochemical properties and functional diversity among these eight α-amylases remain unknown. Results: The eight genes were cloned and expressed in Pichia pastoris GS115 by shaking-flask fermentation under the induction of methanol. The sequence alignment, biochemical characterizations and product analysis of starch hydrolysis by these α-amylases were investigated. It is found that the eight α-amylases belonged to three different groups with the typical structure of fungal α-amylase. They exhibited maximal activities at 30­40°C except AmyG and were all stable at acidic pH. Ca2+ and EDTA had no effects on the activities of α-amylases except AmyF and AmyH, indicating that the six amylases were Ca2+ independent. Two novel α-amylases of AmyE and AmyF were found. AmyE hydrolyzed starch into maltose, maltotriose and a small amount of glucose, while AmyF hydrolyzed starch into mainly glucose. The excellent physical and chemical properties including high acidic stability, Ca2+-independent and high maltotriose-forming capacity make AmyE suitable in food and sugar syrup industries. Conclusions: This study illustrates that a gene family can encode multiple enzymes members having remarkable differences in biochemical properties. It provides not only new insights into evolution and functional divergence among different members of an α-amylase family, but the development of new enzymes for industrial application.


Subject(s)
Aspergillus niger/enzymology , alpha-Amylases/genetics , alpha-Amylases/chemistry , Pichia/metabolism , Starch , Temperature , Food Industry , Cloning, Molecular , Fermentation , Hydrogen-Ion Concentration , Hydrolysis
2.
Electron. j. biotechnol ; 27: 37-43, May. 2017. tab, ilus, graf
Article in English | LILACS | ID: biblio-1010283

ABSTRACT

Background: ß-Galactosidases catalyze both hydrolytic and transgalactosylation reactions and therefore have many applications in food, medical, and biotechnological fields. Aspergillus niger has been a main source of ß-galactosidase, but the properties of this enzyme are incompletely studied. Results: Three new ß-galactosidases belonging to glycosyl hydrolase family 35 from A. niger F0215 were cloned, expressed, and biochemically characterized. In addition to the known activity of LacA encoded by lacA, three putative ß-galactosidases, designated as LacB, LacC, and LacE encoded by the genes lacB, lacC, and lacE, respectively, were successfully cloned, sequenced, and expressed and secreted by Pichia pastoris. These three proteins and LacA have N-terminal signal sequences and are therefore predicted to be extracellular enzymes. They have the typical structure of fungal ß-galactosidases with defined hydrolytic and transgalactosylation activities on lactose. However, their activity properties differed. In particular, LacB and lacE displayed maximum hydrolytic activity at pH 4­5 and 50°C, while LacC exhibited maximum activity at pH 3.5 and 60°C. All ß-galactosidases performed transgalactosylation activity optimally in an acidic environment. Conclusions: Three new ß-galactosidases belonging to glycosyl hydrolase family 35 from A. niger F0215 were cloned and biochemically characterized. In addition to the known LacA, A. niger has at least three ß-galactosidase family members with remarkably different biochemical properties.


Subject(s)
Aspergillus niger/enzymology , beta-Galactosidase/chemistry , Substrate Specificity , Kinetics , Amino Acid Sequence , Cloning, Molecular , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
3.
Microbiology ; (12)1992.
Article in Chinese | WPRIM | ID: wpr-683973

ABSTRACT

Fed-batch cultures of recombinant Rchia pastoris were conducted for production of angiostatin. The whole fermentation included a growth phase on glycerol and an expression phase on methanol. When ammonium hydroxide solution was used to adjust pH, the cell growth during the expression phase was inhibited and the highest angiostatin concentration was 9.08 mg/L. Shake-flask cultures were carried out in media containing different quantities of ammonia. The results showed that ammonia had an obvious inhibition effect on the cell growth during the expression phase. Therefore KOH solution was used to adjust pH, and during the expression phase cells were able to grow and the highest angiostatin concentration reached 20 mg/L.

4.
Microbiology ; (12)1992.
Article in Chinese | WPRIM | ID: wpr-685702

ABSTRACT

Proteolytic degradation has been a severe problem when Pichia pastoris is employed to express recombinant proteins.One alternative method to circumvent this problem is to construct protease gene disruptant.However,the main study of gene disruption is focused on nonrecombinant Pichia pastoris rather than recombinant strain.In our study,we established two different methods to directly disrupt PRC1 and KEX1 gene in recombinant Pichia pastoris.On the basis of this,we further discussed and compared the application and advantages of both methods.

SELECTION OF CITATIONS
SEARCH DETAIL